Thermal Degradation Kinetics of Sugarcane Bagasse and Soft Wood Cellulose

نویسندگان

  • Samson M. Mohomane
  • Tshwafo E. Motaung
  • Neerish Revaprasadu
چکیده

The properties of untreated sugar cane bagasse (SCB) and soft wood (SW) and their respective celluloses were investigated. The celluloses indicated improved crystallinity index values and decreased concentration of lignin and hemicellulose compared to their untreated counterparts. Three degradation models, Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (OFW), and Kissinger (KGR) methods were employed to determine apparent activation energy values. Generally, the thermal degradation processes of both sugarcane bagasse and soft wood included dehydration, degradation of hemicellulose and cellulose, whereas the lignin degraded from the degradation temperature of hemicellulose to the end of the cellulose. The apparent activation energy values obtained from the OFW and KAS models vary with the degree of conversion, and showed similar trends. The activation energies obtained by KGR were relatively lower than those obtained from the KAS and OFW methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction of Hemicellulose and Lignin from Sugarcane Bagasse for Biopolymer Films: Green Process

A hemicellulose is any of several heteropolymers , such as arabinoxylans, present along with cellulose in almost all plant cell walls. Hemicellulose has a random, amorphous structure with little strength. It is easily hydrolyzed by dilute acid or base as well as myriad hemicellulase enzymes. In this study, lignin and hemicellulose was extracted from sugarcane bagasse using the ammonium hydrolys...

متن کامل

Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatmen...

متن کامل

Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production

The recent interest in bioconversion of agricultural and industrial wastes to chemical feedstock has led to extensive studies on cellulolytic enzymes produced by microorganisms. In the present study three lignocellulosic substrates viz. sugarcane bagasse, sawdust and water hyacinth were pre-treated with alkali and enzyme and their effect on bioconversion has been investigated. The ability of se...

متن کامل

Dissolution and Structure Change of Bagasse Cellulose in Zinc Chloride Solution

The dissolution of sugarcane bagasse cellulose (SBC) in zinc chloride solution was studied at elevated temperatures. Based on single factor experiments, the effects of zinc chloride mass fraction, dissolution time, temperature, and bagasse cellulose mass fraction were investigated by an orthogonal experiment, and the optimal dissolution conditions were obtained. The dissolution process of bagas...

متن کامل

Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017